Generating Synthetic Multi-label Data Streams

نویسندگان

  • Jesse Read
  • Bernhard Pfahringer
  • Geoff Holmes
چکیده

There are many available methods for generating synthetic data streams. Such methods have been justified by the need to study the efficacy of algorithms on a theoretically infinite stream, and also a lack of real-world data of sufficient size. Although multi-label classification has attracted considerable interest in recent years, most of this work has been carried out in the context of a batch learning environment rather than a data stream. This paper makes an in-depth analysis of multi-label data, and presents a general framework for generating synthetic multi-label data streams.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mining Multi-Label Data Streams Using Ensemble-Based Active Learning

Data stream classification has drawn increasing attention from the data mining community in recent years, where a large number of stream classification models were proposed. However, most existing models were merely focused on mining from single-label data streams. Mining from multi-label data streams has not been fully addressed yet. On the other hand, although some recent work touched the mul...

متن کامل

Efficient Multi-label Classification for Evolving Data Streams

Many real world problems involve data which can be considered as multi-label data streams. Efficient methods exist for multi-label classification in non streaming scenarios. However, learning in evolving streaming scenarios is more challenging, as the learners must be able to adapt to change using limited time and memory. This paper proposes a new experimental framework for studying multi-label...

متن کامل

First Principle Models Based Dataset Generation for Multi-Target Regression and Multi-Label Classification Evaluation

Machine Learning and Data Mining research strongly depend on the quality and quantity of the real world datasets for the evaluation stages of the developing methods. In the context of the emerging Online Multi-Target Regression and Multi-Label Classification methodologies, datasets present new characteristics that require specific testing and represent new challenges. The first difficulty found...

متن کامل

Streaming Multi-label Classification

This paper presents a new experimental framework for studying multi-label evolving stream classification, with efficient methods that combine the best practices in streaming scenarios with the best practices in multi-label classification. Many real world problems involve data which can be considered as multi-label data streams. Efficient methods exist for multi-label classification in non strea...

متن کامل

MLIFT: Enhancing Multi-label Classifier with Ensemble Feature Selection

Multi-label classification has gained significant attention during recent years, due to the increasing number of modern applications associated with multi-label data. Despite its short life, different approaches have been presented to solve the task of multi-label classification. LIFT is a multi-label classifier which utilizes a new strategy to multi-label learning by leveraging label-specific ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009